A global satellite environmental data record derived from AMSR-E and AMSR2 microwave Earth observations

نویسندگان

  • Jinyang Du
  • John S. Kimball
  • Lucas Alan Jones
  • Youngwook Kim
  • Joseph M. Glassy
  • Jennifer D. Watts
  • Lucas A. Jones
  • Joseph Glassy
چکیده

Spaceborne microwave remote sensing is widely used to monitor global environmental changes for understanding hydrological, ecological, and climate processes. A new global land parameter data record (LPDR) was generated using similar calibrated, multifrequency brightness temperature (Tb) retrievals from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and the Advanced Microwave Scanning Radiometer 2 (AMSR2). The resulting LPDR provides a long-term (June 2002–December 2015) global record of key environmental observations at a 25 km grid cell resolution, including surface fractional open water (FW) cover, atmosphere precipitable water vapor (PWV), daily maximum and minimum surface air temperatures (Tmx and Tmn), vegetation optical depth (VOD), and surface volumetric soil moisture (VSM). Global mapping of the land parameter climatology means and seasonal variability over the full-year records from AMSR-E (2003–2010) and AMSR2 (2013–2015) observation periods is consistent with characteristic global climate and vegetation patterns. Quantitative comparisons with independent observations indicated favorable LPDR performance for FW (R ≥ 0.75; RMSE≤ 0.06), PWV (R ≥ 0.91; RMSE≤ 4.94 mm), Tmx and Tmn (R ≥ 0.90; RMSE≤ 3.48 C), and VSM (0.63≤ R ≤ 0.84; bias-corrected RMSE≤ 0.06 cm3 cm−3). The LPDR-derived global VOD record is also proportional to satellite-observed NDVI (GIMMS3g) seasonality (R ≥ 0.88) due to the synergy between canopy biomass structure and photosynthetic greenness. Statistical analysis shows overall LPDR consistency but with small biases between AMSR-E and AMSR2 retrievals that should be considered when evaluating long-term environmental trends. The resulting LPDR and potential updates from continuing AMSR2 operations provide for effective global monitoring of environmental parameters related to vegetation activity, terrestrial water storage, and mobility and are suitable for climate and ecosystem studies. The LPDR dataset is publicly available at http://files.ntsg.umt.edu/data/LPDR_v2/.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inter-Calibration of Satellite Passive Microwave Land Observations from AMSR-E and AMSR2 Using Overlapping FY3B-MWRI Sensor Measurements

The development and continuity of consistent long-term data records from similar overlapping satellite observations is critical for global monitoring and environmental change assessments. We developed an empirical approach for inter-calibration of satellite microwave brightness temperature (Tb) records over land from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and Microwave Scan...

متن کامل

Instrument Performance and Calibration of Amsr-e and Amsr2

The Global Change Observation Mission (GCOM) consists of two satellite observing systems and three generations to achieve global, comprehensive, and long-term Earth monitoring. The first satellite of the GCOM-W (Water) series will be GCOM-W1 with the Advanced Microwave Scanning Radiometer-2 (AMSR2) onboard. AMSR2 is a successor of AMSR on the Advanced Earth Observing Satellite-II (ADEOS-II) and...

متن کامل

A Study on Extracting the Trend of Thin Ice Distribution in the Sea of Okhotsk Using Amsr-e and Amsr2 Data

Passive microwave radiometers onboard satellite can penetrate clouds and can monitor the global sea ice distribution on daily basis. It is not easy to extract sea ice thickness information from satellite data. In 2012, the authors have developed a method to detect thin ice area using the brightness temperature data derived from the passive microwave sensor AMSR-E onboard Aqua satellite. The bas...

متن کامل

First Assessment of the Advanced Microwave Scanning Radiometer 2 (AMSR2) Soil Moisture Contents in Northeast Asia

The Advanced Microwave Scanning Radiometer 2 (AMSR2) onboard the Global Change Observation Mission 1–Water (GCOM-W1) was launched by the Japan Aerospace Exploration Agency (JAXA) in May 2012. The AMSR2 is the follow-on model of the AMSR-Earth Observing System (AMSR-E) onboard the Aqua satellite. An assessment of the reliability of the soil moisture estimations from the newly launched passive se...

متن کامل

Evaluating Consistency of Snow Water Equivalent Retrievals from Passive Microwave Sensors over the North Central U. S.: SSM/I vs. SSMIS and AMSR-E vs. AMSR2

For four decades, satellite-based passive microwave sensors have provided valuable snow water equivalent (SWE) monitoring at a global scale. Before continuous long-term SWE records can be used for scientific or applied purposes, consistency of SWE measurements among different sensors is required. SWE retrievals from two passive sensors currently operating, the Special Sensor Microwave Imager So...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017